- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Calder, Jeff (2)
-
Miller, Kevin (2)
-
Baca, Xoaquin (1)
-
Bertozzi, Andrea (1)
-
Bertozzi, Andrea L. (1)
-
Chapman, James (1)
-
Chen, Bohan (1)
-
Dayanir, Nihat Alperen (1)
-
Dayton, Scott (1)
-
Gelb, Anne (1)
-
Green, Dylan (1)
-
Huston, Dryver (1)
-
Mauro, Jack (1)
-
Milledge, Oliver (1)
-
Nikitovic, Jovana (1)
-
Setiadi, Jason (1)
-
Shi, Zhan (1)
-
Tan, Zheng (1)
-
Viswanathan, Aditya (1)
-
Xia, Tian (1)
-
- Filter by Editor
-
-
Zelnio, Edmund (4)
-
Garber, Frederick D (2)
-
Garber, Frederick D. (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zelnio, Edmund; Garber, Frederick D (Ed.)Ground Penetrating Radar (GPR) is essential for subsurface exploration. Conventional GPR 3D imaging demands dense spatial sampling along regular grids, which is both time-consuming and impractical in complex environments. In this work, we propose a novel method that combines sparse recovery techniques with a placement matrix to merge arbitrarily and sparsely sampled measurements into a regular grid framework. By exploiting the inherent sparsity of subsurface targets and using the Dantzig Selector with cross-validation, our method reconstructs the target reflectivity vector from random spatial sampling. The recovered data is then processed via the Back-Projection Algorithm (BPA) to generate high-resolution 3D images. Simulations demonstrate that our approach not only improves imaging quality under reduced sampling conditions but also efficiently handles arbitrary scanning paths by mapping irregular measurements onto the desired grid.more » « lessFree, publicly-accessible full text available May 28, 2026
-
Dayton, Scott; Milledge, Oliver; Nikitovic, Jovana; Gelb, Anne; Green, Dylan; Viswanathan, Aditya (, SPIE)Zelnio, Edmund; Garber, Frederick D (Ed.)
-
Chapman, James; Chen, Bohan; Tan, Zheng; Calder, Jeff; Miller, Kevin; Bertozzi, Andrea L. (, Algorithms for Synthetic Aperture Radar Imagery XXX; 125200B (2023))Zelnio, Edmund; Garber, Frederick D. (Ed.)
-
Miller, Kevin; Mauro, Jack; Setiadi, Jason; Baca, Xoaquin; Shi, Zhan; Calder, Jeff; Bertozzi, Andrea (, SPIE Defense and Commercial Sensing: Algorithms for Synthetic Aperture Radar Imagery XXIX)Zelnio, Edmund; Garber, Frederick D. (Ed.)
An official website of the United States government
